Toyota unveiled its forward-thinking approach to electric vehicle design, focusing on sustainability, performance, and cutting-edge technology. Peugeot introduced groundbreaking technologies like the Hypersquare control system and steer-by-wire, marking a significant leap in electric vehicle design and user experience. These innovations represent the brand’s commitment to redefining driving dynamics in the EV era.
Automotive Industry and Market Trends
Many of those trends will be on display at the Consumer Electronics Show next week in Las Vegas. Honda will be showing its Series 0 platform that will be used for its SAE Level 4 driverless car in 2026. Recent auto trends show that customers prefer to experience a car or dealership before purchasing. Top car brands are embracing VR as part of their dealership photography strategies to further enhance the customer experience. Due to these advancements, the global automotive IoT market is anticipated to reach USD 56 billion by 2026 at a CAGR of 19% during the period from 2021 to 2026.
Q) What are the predictions for the automotive industry?
Silicon carbide (SiC) semiconductors improve energy efficiency in high-voltage EV systems by reducing losses and enhancing thermal management. Moreover, Asia-Pacific leads the automotive semiconductor market with a 45% global share. In Europe, the EU’s Chips Act aims to raise the bloc’s share of global chip production from under 10% to about 20% by 2030. Moreover, the startup offers fleet-grade protection through continuous monitoring and predictive alerts. Its intelligent asset tracking defends vehicles against spoofing, ransomware, and remote control attempts.
Demand is rising, especially for power electronics, battery management systems, and more energy-efficient chips. Also, MotionSafe protects the auto industry by securing vehicle data, supporting supply chains, and ensuring a safe transition to connected mobility. South African startup Motomatix applies AI and custom software solutions to strengthen supply chain resilience in the automotive repair sector. Supply chain resilience and nearshoring strengthen operational stability, while vehicle cybersecurity ensures trust in connected ecosystems.
Hungarian startup V2ROADS offers a range of products and services tailored to the V2X ecosystem. They provide V2X applications, services, and communication stacks specifically designed for on-board units (OBUs) and road-side units (RSUs). Further, its V2X-cloud system implementation guarantees uninterrupted connectivity between vehicles and infrastructure. Finally, its V2AP (V2X Integration Platform) is a server-side software to amplify V2X services to elevate road safety and efficiency.
NuNami designs Vehicular Interface Systems
Additionally, CARNIQ Technologies supports the automotive sector with threat analysis, cybersecurity management, and secure system development. It also provides validation services that ensure resilience against potential risks. The rapid rollout of software-defined vehicles, vehicle-to-everything (V2X) networks, and electrification pushes automakers to secure digital systems as rigorously as physical components. Moreover, the startup’s marketplace connects professionals in a secure environment.
Autonomous vehicles are reshaping mobility, from AI‑powered perception to intelligent infrastructure and generative simulation. This report explores how breakthrough technologies are accelerating the shift toward safer, smarter, and more sustainable transportation systems worldwide. Automakers will continue to incorporate these systems into even more affordable models, making safety technologies more accessible to a broader range of consumers. By leveraging tech and sustainable practices, the automotive sector can meet the challenges of tomorrow while delivering exceptional value to consumers.
LiDAR sensors enable precise 3D mapping, crucial for vehicle navigation and obstacle detection. AI algorithms process vast data from sensors and cameras, enhancing decision-making for safe, efficient driving. French startup Airnity provides a cellular connectivity platform for the automotive industry to enhance connected car operations. THINKey operates through a secure architecture using enclaves in the phone, vehicle, and cloud, adhering to the car connectivity consortium’s digital key standard. Additionally, the startup offers infotainment solutions with plug-and-play SDKs and certification-ready apps for phone mirroring and multimedia features.
Apache Automotive develops Hybrid Cars
Many enterprises are moving ahead to create autonomous vehicles with all the multi-faceted benefits. To meet these new requirements and realize this long-term vision, approaches are required to push against the status quo. To understand AI’s impact on the automotive industry, it is important to consider the ongoing shifts across the automotive landscape, especially the transition toward software-defined vehicles. Modern vehicles have transitioned from distributed architecture to a centralized, high-performance computing model. This transformation has further streamlined the vehicle architecture, facilitating over-the-air software updates, more efficient management, and lowering overall complexity.
The Ford Mustang GTD Is the Best Muscle Car Ever
Central to this evolution is the growing demand for electric vehicles and software-defined vehicles. British startup Cube Intelligence develops a blockchain-based security platform for autonomous vehicles. The startup’s technology utilizes hash codes to block malicious attacks or hacking attempts on autonomous cars and connected cars. Additionally, Cube Intelligence offers ride-hailing and valet parking services for AVs, as well as smart parking management systems. The automotive manufacturing sector is entering 2025 amidst seismic shifts driven by electrification, digital transformation, and the growing mandate for sustainability.
How is electric vehicle technology shaping the automotive industry?
The startup’s product range includes residential wallboxes from 7 to 22 kW and commercial chargers up to 132 kW. These units support CCS2 and CHAdeMO standards, ensuring broad adaptability across EV models. For example, Qualcomm released reports and white papers highlighting C-V2X as a critical capability for intelligent transportation systems. They also emphasize that regulatory support and infrastructure readiness are essential for large-scale deployment. BMW’s Neue Klasse illustrates this shift with four superbrains that reduce wiring by 600 meters and reduce vehicle weight. This centralization allows faster product cycles, OTA updates, and cross-domain features.
consumer trends
Get in touch to easily and exhaustively scout relevant technologies & startups that matter to you. Operating from Germany and the US, EcoG is a startup offering an IoT-based operating system and platform for EV charging. The startup provides manufacturers with tools that make the development and maintenance of EV charging infrastructure simple, fast, and scalable. It also allows operators to integrate services and microservices in the chargers to make the charging process profitable. In addition, the solution works with any EV charger and enables new features to be shipped throughout the network.
Kemet Automotive manufactures All-terrain Electric Vehicles
The startup uses automotive sensors and compute platforms to offer a scalable solution for cars to enable large-scale fleet learning. German startup SafeAD develops a vision-first perception and scene-understanding pipeline for autonomous driving. The charging infrastructure is more vulnerable as a result of the quick uptake of EVs, which hackers may attack to obtain customer information or interfere with services. The need for high-performance processors is also growing as a result of software-defined vehicles (SDVs), which rely on semiconductors for ongoing updates and subscription-based services.
WF Telematics improves Fleet and Asset Management
The fleet of light-duty EVs has grown in the last four years by more than 14 times with a very significant, 17-times increase in the fleet of plug-in hybrid vehicles (PHEVs). Brazil is leading the way by a large margin, followed by Mexico, Costa Rica, Colombia and Chile, respectively. This Electric Vehicles Market Report 2026 examines industry growth, investment flows, patent activity, and global hubs shaping the EV ecosystem.
KonnectShift provides IoT-based Fleet Optimization
- In 2025, more dealerships are expected to offer online sales, vehicle inspection, and home delivery.
- By leveraging tech and sustainable practices, the automotive sector can meet the challenges of tomorrow while delivering exceptional value to consumers.
- The automotive industry is highly dynamic, and these trends are subject to change over time.
- Identifying new opportunities and emerging technologies to implement into your business early on goes a long way in gaining a competitive advantage.
- To meet these new requirements and realize this long-term vision, approaches are required to push against the status quo.
- This is especially necessary for electric, connected, and autonomous vehicles, which require specialized software and advanced technology to function safely.
The AV market is projected to reach USD 1.73 trillion by 2033, growing at a CAGR of 31.85% from 2025 to 2033. Automakers are investing in cybersecurity technologies such as hardware security modules (HSMs), AI-based intrusion detection systems, and secure over-the-air (OTA) updates to address these challenges. Automotive Manufacturing Solutions (AMS) is the essential resource for automotive manufacturing professionals and suppliers globally. We invite you to revisit these top stories, share your perspectives, and stay tuned for more in-depth coverage of the trends shaping the automotive world. Looking ahead, JLR’s focus on carbon-neutral manufacturing and environmentally responsible practices sets a powerful example for the industry. The answer lies in education, infrastructure, and trust-building—slow but steady wins the race.
- In 2025, Uber and GM Cruise will partner, allowing users of the Uber ride-hailing platform to book fully self-driving vehicles from the app in selected US cities.
- Software-defined vehicles redefine business models through centralized computing and OTA upgrades.
- Toyota’s North Carolina battery plant exemplifies this commitment, with operations fully powered by renewables.
- The solution captures millions of data points in real time and analyzes them to enable lenders to instantly assess and reduce risk.
- This increases the regulatory push toward connected and safety-enhanced vehicles.
- This approach enhances flexibility across its global operations, ensuring a rapid response to shifting market demands.
- The startup provides single-chip motor control solutions that integrate RISC-V processor cores with programmable MOSFET drivers, FD-CAN and LIN interfaces, and dedicated PWM modules.
- Threats like supply chain attacks, data breaches, ransomware, and state-sponsored intrusions are on the rise.
🏁 Conclusion: Navigating the Future of Automotive
The global automotive sensor fusion market is projected to reach USD 3.3 billion by 2030 at a 42.4% CAGR. The market reflects its role in meeting strict safety rules and consumer demand for smarter vehicles. AI, additive manufacturing, the Internet of Things, and 5G have become sources of product innovation and manufacturing efficiency, which in turn has led to revolutionary changes in customer experience.
- Brazil is leading the way by a large margin, followed by Mexico, Costa Rica, Colombia and Chile, respectively.
- This article explores the strategic reasons behind the move, including the UAE’s favourable energy policies, market accessibility, and logistical advantages.
- These advancements are critical as manufacturers aim to balance efficiency, durability, and safety.
- Singapore’s adaptive traffic signal systems, along with real-time monitoring, ERP pricing, and predictive analytics, improve traffic efficiency.
- Data from the past 10 years shows the sale of luxury vehicles making a steep climb in 2022.
- Consistent brand messaging across all channels, including in-car infotainment systems and websites, can help foster long-term customer relationships, promoting brand loyalty and advocacy.
- Further, Chipv creates power control chips equipped with triple RISC-V cores, extensive on-chip memory, and robust hardware security modules.
It also leads Europe in new EV market activity, with just 9.61 percent of new passenger car sales in 2023 attributed to gasoline, diesel, and non-rechargeable hybrid vehicles. The idea behind a circular economy is to create a closed-loop system where materials are reused, refurbished, and recycled rather than disposed of. In 2025, many automakers will focus on creating vehicles that are easier to disassemble, repair, and recycle at the verify accident history before paying end of their lifecycle. This approach could significantly reduce waste and contribute to a more sustainable automotive industry.
This process enables us to identify the most impactful and innovative trends in the automotive industry. Volvo Cars has announced plans to adopt large aluminium castings for its next-generation electric vehicles, aiming to simplify production and enhance sustainability. Meanwhile, Toyota is reported to be cautiously evaluating the technology, balancing its benefits against potential risks.
It provides exclusive access to vehicles and optimizes purchase decisions based on supply and demand trends. Also, digital twin technology builds virtual replicas of supply chains to simulate disruptions and optimize performance. The USMCA requires 75% of motor industry components to be produced in North America. And the US Inflation Reduction Act ties USD 7500 EV subsidies to regional sourcing.
In addition, the IoT’s potential in the automotive industry presents a significant chance for manufacturers to revamp their marketing strategies. IoT solutions can offer numerous benefits to end-users by utilizing interconnected systems, such as better safety, driving assistance, and predictive maintenance. Collecting user data through these sensors creates ample opportunities for marketers to promote upselling. Automakers and technology companies are forming partnerships due to vehicles’ constantly evolving tech requirements.
It eliminates mandates that favour EVs, emphasising consumer choice and opposing regulations that make gasoline-powered vehicles less accessible. Subsidies and incentives for EVs are also under scrutiny, with plans to reconsider or eliminate government-imposed market advantages that favour them. Crucially, the order halts federal funding for EV infrastructure projects, such as charging station programs, until they align with the administration’s policy goals.
These all-inclusive options reduce the financial burdens of ownership, especially for urban users. Vehicle cybersecurity drives one of the fastest-growing areas in the auto industry as connected vehicles multiply and cyber risks intensify. Analysts project the automotive cybersecurity market to increase from USD 5.24 billion in 2025 to approximately USD 18.88 billion by 2034, advancing at a CAGR of 15.3%. Geopolitical risks, regulatory frameworks, cost advantages, and compliance needs drive the auto industry toward supply chain resilience and nearshoring.
Future Readiness Monitor: Automotive Industry Report
In these regions, shared mobility options like vans, minibuses, and two- and three-wheelers are more common and often electrified due to their affordability. In India, for example, electric car sales rose by 70%, driven by government incentives and new models, though future growth may be impacted if it sees subsidy reductions. The automotive manufacturing industry is evolving rapidly as manufacturers respond to technological advancements, consumer preferences, and regulatory changes.
What initially appeared to be a niche sector is now the foundation of the auto industry’s transition. While automakers spend billions developing electric cars, most governments worldwide have ambitious plans to phase out internal combustion engines. According to Statista’s report, global sales of electric vehicles are expected to reach an astounding US$786.2 billion by the end of 2024. The concept of Mobility as a Service (MaaS) is changing how people think about transportation. Instead of owning a car, consumers will increasingly use digital platforms to access transportation services on demand, whether through ride-sharing, car-sharing, or subscription models. MaaS is set to become a key focus for the automotive industry in 2025 as companies look to diversify their business models and create new revenue streams.
